【3D专委会】我会专家——赵德伟教授团队研究成果:选区激光熔融钽金属接骨板研究与临床转化

【3D专委会】我会专家——赵德伟教授团队研究成果:选区激光熔融钽金属接骨板研究与临床转化

内容简介

本研究论文聚焦于通过选区激光熔融工艺开发一种生物型钽金属接骨板应用于骨折内固定。选区激光熔融工艺(SLM)是常用的一种应用于金属材料加工的增材制造技术。与传统机械加工技术相比,增材制造技术可以根据患者骨植入部位的解剖结构设计与打印植入体。这种植入体可以完全适配于植入部位骨组织结构和形态。钽金属作为一种亲生物金属,与骨组织具有极佳的亲和力。多孔钽可以引导骨长入,形成骨组织和接骨板一体化结构,具有长期稳定性,不需要二次手术取出;多孔钽可以降低接骨板弹性模量,从而减少应力遮挡效应,加速骨折部位组织修复再生。本论文系统研究了选区激光熔融钽金属、选区激光熔融Ti6Al4V合金以及表面具有化学气相沉积钽涂层的Ti6Al4V合金的理化性能。选区激光熔融钽金属具有良好的综合力学性能,更佳的生物相容性和促成骨相关的生物活性;同时我们还发现钽金属的免疫源性也显著低于Ti6Al4V,有助于减少植入体周围组织炎性,促进骨组织修复再生。临床试验也验证了选区激光熔融钽金属接骨板用于骨折内固定的优势与可行性。

参考文献

1. Han Q, Wang CY, Chen H et al (2019) Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng 5(11): 5798–5824. https://doi.org/10.1021/acsbiomaterials.9b00493

2. Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci 54(3):397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

3. Carraro F, Bagno A (2023) Tantalum as trabecular metal for endosseous implantable applications. Biomimetics 8(1):49. https://doi.org/10.3390/biomimetics8010049

4. Li JL, Qin L, Yang K et al (2020) Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol 36:190–208. https://doi.org/10.1016/j.jmst.2019.07.024

5. Gao HR, Yang JZ, Jin X et al (2021) Porous tantalum scaffolds: fabrication, structure, properties, and orthopedic applications. Mater Des 210:110095. https://doi.org/10.1016/j.matdes.2021.110095

6. Chen QZ, Thouas GA (2015) Metallic implant biomaterials. Mat Sci Eng R 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

7. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13(6):547–557. https://doi.org/10.1038/nmat3937

8. Kelly CN, Miller AT, Hollister SJ et al (2018) Design and structure-function characterization of 3D printed synthetic porous biomaterials for tissue engineering. Adv Healthc Mater 7(7):e1701095. https://doi.org/10.1002/adhm.201701095

9. Zhang XY, Fang G, Xing LL et al (2018) Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering. Mater Des 157:523–538. https://doi.org/10.1016/j.matdes.2018.07.064

10. Chen ZY, Yan XC, Yin S et al (2020) Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl 106:110289. https://doi.org/10.1016/j.msec.2019.110289

11. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670. https://doi.org/10.1016/j.biomaterials.2005.12.002

12. Davoodi E, Montazerian H, Mirhakimi AS et al (2022) Additively manufactured metallic biomaterials. Bioact Mater 15:214–249. https://doi.org/10.1016/j.bioactmat.2021.12.027

13. Svetlizky D, Das M, Zheng BL et al (2021) Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today 49:271–295. https://doi.org/10.1016/j.mattod.2021.03.020

14. Jia ZJ, Xu XX, Zhu DH et al (2023) Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Prog Mater Sci 134:101072. https://doi.org/10.1016/j.pmatsci.2023.101072

15. Javaid M, Haleem A (2018) Current status and challenges of additive manufacturing in orthopaedics: an overview. J Clin Orthop Trauma 10(2):380–386. https://doi.org/10.1016/j.jcot.2018.05.008

16. Zhang XZ, Leary M, Tang HP et al (2018) Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opin Solid State Mater Sci 22(3):75–99. https://doi.org/10.1016/j.cossms.2018.05.002

17. Li YF, Liu HW, Wang C et al (2023) 3D printing titanium grid scaffold facilitates osteogenesis in mandibular segmental defects. NPJ Regen Med 8(1):38. https://doi.org/10.1038/s41536-023-00308-0

18. Liu BY, Ma ZJ, Li JL et al (2021) Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater 10:269–280. https://doi.org/10.1016/j.bioactmat.2021.09.009

19. Kunčická L, Kocich R, Lowe TC (2017) Advances in metals and alloys for joint replacement. Prog Mater Sci 88:232–280. https://doi.org/10.1016/j.pmatsci.2017.04.002

20. Bandyopadhyay A, Mitra I, Shivaram A et al (2019) Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit Manuf 28: 259–266. https://doi.org/10.1016/j.addma.2019.04.025

21. Balla VK, Bodhak S, Bose S et al (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6(8):3349–3359. https://doi.org/10.1016/j.actbio.2010.01.046

22. Avery D, Morandini L, Celt N et al (2023) Immune cell response to orthopedic and craniofacial biomaterials depends on biomaterial composition. Acta Biomater 161:285–297. https://doi.org/10.1016/j.actbio.2023.03.007

23. Gibon E, Amanatullah DF, Loi F et al (2017) The biological response to orthopaedic implants for joint replacement: Part I: metals. J Biomed Mater Res B Appl Biomater 105(7):2162–2173. https://doi.org/10.1002/jbm.b.33734

24. Seyedizade SS, Afshari K, Bayat S et al (2020) Current status of M1 and M2 macrophages pathway as drug targets for inflammatory bowel disease. Arch Immunol Ther Exp 68(2):10. https://doi.org/10.1007/s00005-020-00576-4

25. D’alessio S, Correale C, Tacconi C et al (2014) VEGF-C–dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Investig 124(9):3863–3878. https://doi.org/10.1172/JCI72189

26. Zhu W, Yu JB, Nie Y et al (2014) Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Invest 43(7):638–652. https://doi.org/10.3109/08820139.2014.909456

27. Abaricia JO, Shah AH, Chaubal M et al (2020) Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterial 243:119920. https://doi.org/10.1016/j.biomaterials.2020.119920

28. Donlin LT, Jayatilleke A, Giannopoulou EG et al (2014) Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J Immunol 193(5):2373–2383. https://doi.org/10.4049/jimmunol.1400486

29. Yuan X, Liu W, Li Y et al (2022) CCL3 aggravates intestinal damage in NEC by promoting macrophage chemotaxis and M1 macrophage polarization. Pediatr Res 94(1):119–128. https://doi.org/10.1038/s41390-022-02409-w

30. Ge S, Yang W, Chen HQ et al (2021) MyD88 in macrophages enhances liver fibrosis by activation of NLRP3 inflammasome in HSCs. Int J Mol Sci 22(22):12413. https://doi.org/10.3390/ijms222212413

31. Mitra I, Bose S, Dernell WS et al (2021) 3D printing in alloy design to improve biocompatibility in metallic implants. Mater Today 45:20–34. https://doi.org/10.1016/j.mattod.2020.11.021

特别声明:[【3D专委会】我会专家——赵德伟教授团队研究成果:选区激光熔融钽金属接骨板研究与临床转化] 该文观点仅代表作者本人,今日霍州系信息发布平台,霍州网仅提供信息存储空间服务。

猜你喜欢

金博智慧:注意力越好,大脑的算力越强(金博智慧:注意力训练仪)

更重要的是,该研究揭示了其背后的神经通路:右侧水平段顶内沟(rHIPS,一个核心的数学加工脑区)与右侧脑岛(insula,一个与焦虑、厌恶等负面情绪密切相关的脑区)之间的功能连接强度,能够显著预测个体的数学概…

金博智慧:注意力越好,大脑的算力越强(金博智慧:注意力训练仪)

杨议没想到,自己嘲讽岳云鹏演唱会,郭德纲竟会亲自下场护犊子(杨议有没有老婆)

杨仪直播中批评岳云鹏演唱会的片段迅速在网上传播开来,郭德纲也在第一时间作出了回应,这也是郭德纲自去年“七月风波”以来,首次与杨仪产生网络上的互动。 而在杨仪与德云社的公开对抗中,郭德纲始终保持沉默,直到事件…

杨议没想到,自己嘲讽岳云鹏演唱会,郭德纲竟会亲自下场护犊子(杨议有没有老婆)

2025京东骁友超级派对举办 粉丝齐聚体验骁龙3C数码新潮好物

为让消费者能以超值好价入手骁龙产品,京东推出骁龙京东超级品类日活动,大额券叠国补至高立减700元,消费者可在骁龙主题馆内扫码购入3C数码好物。来到2025 ChinaJoy骁龙主题馆现场的消费者,可以通过扫…

2025京东骁友超级派对举办 粉丝齐聚体验骁龙3C数码新潮好物

大数据管理与应用专业学什么?适合哪些岗位?一篇讲透(大数据管理与应用专业就业前景)

今天就来扒一扒核心课程和对口岗位,还有悄悄加分的窍门,那就是CDA数据分析师证书,这个证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,选专业 转方向的宝子速码!把技术练扎实,选…

大数据管理与应用专业学什么?适合哪些岗位?一篇讲透(大数据管理与应用专业就业前景)

专家解读|以“智”提质,向“新”而行,擘画信息化赋能新图景

我国持续加强人工智能基础研究,以应用导向推动新技术向场景纵深渗透,已形成覆盖基础层、框架层、模型层、应用层的完整人工智能产业体系。“人工智能+制造”行动深入实施,企业将深化通用大模型、行业大模型和智能体在重点…

专家解读|以“智”提质,向“新”而行,擘画信息化赋能新图景