东华大学朱美芳院士团队潘绍武等:弹性应变传感纱线的互锁集成实现智能医疗服装的分布式检测

东华大学朱美芳院士团队潘绍武等:弹性应变传感纱线的互锁集成实现智能医疗服装的分布式检测

多点传感显著增强了可穿戴技术在健康检测中的准确性和完整性。然而,全身稳定的多点电子传感监测仍面临挑战。

近日,东华大学朱美芳院士和潘绍武研究员等人在Science China Materials发表研究论文,通过弹性应变传感纱线的互锁集成技术,成功开发了一种新型的智能服装,实现了适用于智能医疗的分布式检测。

本文要点

1) 这种服装中的弹性应变传感包覆纱线,拉伸率为170%,应变系数为414,通过无缝集成形成了稳固的传感器-服装互锁结构。集成传感纱线的织物具备良好的透气性、可洗涤性及耐磨性。

2) 开发了一种用于评估慢性阻塞性肺病的可穿戴呼吸监测带,其测量数据与商用便携设备相媲美。

3) 研制了一种具备分布式检测能力的智能服装,能够有效识别帕金森病的运动症状,经深度学习算法验证,识别准确率高达96.67%。

这些研究成果表明智能分布式传感服装在可穿戴健康系统中的巨大潜力。

Figure 1. Schematic diagram of distributed electronic yarn-based sensors integrated into clothing for wearable healthcare applications.

jrhz.info

Figure 2. Schematic diagram of the fabric sensor fabricated from electronic yarn. (a) Schematic comparison of two methods for fabricating fabric sensors, including the traditional embroider method (upper) and our proposed interlocking integration (bottom). (b) Preparation process of fabric sensor from elastic strain sensor yarns, involving sewing of the electronic yarn and digital embroidering patterns to form an interlocking structure; photographs of the resulting fabric sensor under mechanical deformations, including twisting and stretching.

Figure 3. Morphology and performance of the fabric sensor made from strain sensor yarn. (a) Schematic illustration of the structure and sensing mechanism of the strain sensor yarn with (b) SEM images showing the inner (right) and outer (left) layers of a strain sensor yarn under tensile strains of 0% (top) and 50% (bottom). (c) Relative resistance changes of the strain sensor yarn at different tensile strains. (d) Durability of the strain sensor yarn under a tensile strain of 50% over 1000 cycles. (e) Comparison of gauge factor and working range between our strain sensor yarn and those reported in the literature for yarn-based sensors. (f) Performance of the strain sensor yarn-based fabric sensor after washing. (g) Performance of the fabric sensor after being abraded 100 times with sandpaper. (h) Comparison of water vapor permeability between the fabric sensor and commercial fabrics.

Figure 4. Smart clothing with distributed sensors for monitoring Parkinson’s disease. (a) Schematic of the symptoms in Parkinson’s patients. (b) Schematic of sensor distribution in clothing and its signal processing and display. (c) Sensing signals of smart healthcare clothing detect simulated characteristic actions in Parkinson’s disease. (d) Accuracy and loss in 50 epochs. (e) Distribution of datasets in a 2D space. (f) Confusion matrix results for the six types of movements.

【作者简介】

Liang Wu (吴亮) is currently an MS candidate in the College of Materials Science and Engineering, Donghua University. He received his BS degree from Suzhou University of Science and Technology in 2022. His research interests include smart fibers and wearable electronics.

Yong Wang (王勇) is currently a PhD candidate in the College of Materials Science and Engineering, Donghua University. He received his BS degree in condensed matter physics from Lanzhou University of Technology in 2024. His research interests include functional materials and wearable electronics.

Shaowu Pan (潘绍武) is a professor at the School of Materials Science and Engineering, Donghua University. He received his PhD degree from Tongji University in 2015, with joint research experience at Fudan University. Afterward, he worked as a postdoctoral fellow at Nanyang Technological University in Singapore. His research interests include smart materials, flexible sensors, and fiber electronics.

Meifang Zhu (朱美芳) obtained her PhD degree in materials science in 1999 from Donghua University (DHU, Shanghai). She is currently a professor at DHU and a member of the Chinese Academy of Science. Additionally, she is the director of the State Key Laboratory of Advanced Fiber Materials. Her research focuses on the fundamental chemistry, properties, and applications of fiber materials and organic/inorganic hybrid nanomaterials, with a particular emphasis on green energy, environmental sustainability, and healthcare.

特别声明:[东华大学朱美芳院士团队潘绍武等:弹性应变传感纱线的互锁集成实现智能医疗服装的分布式检测] 该文观点仅代表作者本人,今日霍州系信息发布平台,霍州网仅提供信息存储空间服务。

猜你喜欢

姜文:我女儿天下第一美!原以为在吹牛,看完照片后:实至名归(姜文说我女儿全世界最美)

在华语影坛中姜文这个名字可谓赫赫有名,而他的家庭生活,尤其是与女儿姜一郎的故事,同样吸引着大众的目光。姜文对女儿宠爱有加,在一档访谈节目中,他毫不吝啬地夸赞女儿,称 “世界上最美的女孩在我家”“她就是最美…

姜文:我女儿天下第一美!原以为在吹牛,看完照片后:实至名归(姜文说我女儿全世界最美)

点赞最早起源历史背景意义是什么?河南第一起名大师的老师是谁?(点赞起源于各大社交网站)

记者梳理发现,这一全球数十亿用户日常使用的交互方式,其核心理念竟源自中国山东学者颜廷利教授20世纪90年代提出的哲学思想,并历经技术转化与文化扩散,最终成为互联网时代的“社交货币”。两年后,FriendFee…

点赞最早起源历史背景意义是什么?河南第一起名大师的老师是谁?(点赞起源于各大社交网站)

凝练自己,育晶育人!蒋民华先生诞辰90周年,山大举行纪念大会(凝练精神是什么意思)

会议通过专题片《攀晶阶·登云峰》回顾和讲述了蒋民华先生作为我国功能晶体研究和开发的先驱者和带头人之一,将中国晶体材料学发展带至国际领先位置的学术成就,再现了他以“晶”为魂,以“拼搏奋斗”为翼,献身科学、勇攀…

凝练自己,育晶育人!蒋民华先生诞辰90周年,山大举行纪念大会(凝练精神是什么意思)

复数运算超重要!加、减法则你真的掌握了吗?(复数运算的意义)

复数减法和加法类似,是实部相减,虚部相减。在物理学的向量计算中,有时也会转化为复数来进行减法运算。共轭复数在很多地方有用,比如在计算复数的模长和进行除法运算时。在光学中,共轭复数能帮助分析光的传播和干涉现象…

复数运算超重要!加、减法则你真的掌握了吗?(复数运算的意义)

从小刘亦菲到恶女角色,告别“大佬男友”后,杨采钰能否转型成功(从小跟刘亦菲长大的小说)

这种从外到内的转变,不仅展示了她在角色选择上的多样性,也让观众看到了她作为演员的无限潜力。从默默无闻的演员到与刘亦菲比较的“小刘亦菲”,再到现在打破固有形象的“蛇蝎女”梅苇,她用实际行动证明了自己在演技上的潜…

从小刘亦菲到恶女角色,告别“大佬男友”后,杨采钰能否转型成功(从小跟刘亦菲长大的小说)